8^(2x)=1/64

Simple and best practice solution for 8^(2x)=1/64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8^(2x)=1/64 equation:



8^(2x)=1/64
We move all terms to the left:
8^(2x)-(1/64)=0
We add all the numbers together, and all the variables
8^2x-(+1/64)=0
We get rid of parentheses
8^2x-1/64=0
We multiply all the terms by the denominator
8^2x*64-1=0
Wy multiply elements
512x^2-1=0
a = 512; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·512·(-1)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{2}}{2*512}=\frac{0-32\sqrt{2}}{1024} =-\frac{32\sqrt{2}}{1024} =-\frac{\sqrt{2}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{2}}{2*512}=\frac{0+32\sqrt{2}}{1024} =\frac{32\sqrt{2}}{1024} =\frac{\sqrt{2}}{32} $

See similar equations:

| |7n+6|+8=1 | | 22-z=12 | | 13x+5=180+149 | | 5.03=3.27+4x | | 2+.25x=5 | | -7x-3x+2=-8x–8 | | 32.70=2.70+5x | | 25+8x=60 | | x=23-2x | | x+x+3+x+2=17 | | 3y+6+47-7=-8 | | m=3(5,5) | | 4-+2=3p-7 | | 2(z+3)=0 | | 5x-1=x+155 | | −14=−20+2 | | -6(q-90)=-24 | | -6=y+16 | | -x+1-2x=1+6x+4x | | 0.101x=2828 | | 5(4z)1/2z=234 | | 5.3=10x​ | | 7z+7=7z7z+7=7z | | 3{3y-4}=33 | | 7.53−0.7x=–9.67−5.4x−9.12 | | {2}^{x+2}+{2}^{x}=80 | | (7x+15)+(2x-25)=180 | | 4b−4=16 | | 2^{x+2}+2^x=80 | | -n+1=12 | | 3z/2=60 | | m=7(0,2) |

Equations solver categories